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ABSTRACT
Sex and genetic variation influence the risk of developing diabetic nephropathy and
ESRD in patients with type 1 diabetes. We performed a genome-wide association study
in a cohort of 3652 patients from the Finnish Diabetic Nephropathy (FinnDiane) Study
with type 1 diabetes to determine whether sex-specific genetic risk factors for
ESRD exist. A common variant, rs4972593 on chromosome 2q31.1, was associated
with ESRD in women (P,531028) but not in men (P=0.77). This association was repli-
cated in the meta-analysis of three independent type 1 diabetes cohorts (P=0.02) and
remained significant for women (P,531028; odds ratio, 1.81 [95% confidence interval,
1.47 to 2.24]) upon combined meta-analysis of the discovery and replication cohorts.
rs4972593 is located between the genes that code for the Sp3 transcription factor,
which interacts directly with estrogen receptor a and regulates the expression of genes
linked to glomerular function and the pathogenesis of nephropathy, and the CDCA7
transcription factor, which regulates cell proliferation. Further examination revealed
potential transcription factor–binding sites within rs4972593 and predicted eight es-
trogen-responsive elements within 5 kb of this locus. Moreover, we found sex-specific
differences in the glomerular expression levels of SP3 (P=0.004). Overall, these results
suggest that rs4972593 is a sex-specific genetic variant associated with ESRD in
patients with type 1 diabetes and may underlie the sex-specific protection against
ESRD.
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In the non-diabetic population, ESRD is
more common in men than in women,
and women seem protected from ESRD
until menopause.1 Similarly, diabetic ne-
phropathy (DN) and ESRD are more
common in diabetic men than in dia-
betic women.2 However, the female
“protection” from ESRD appears attenu-
ated in diabetic women because women
who were younger than age 15 years at
onset of type 1 diabetes (T1D) do not
differ from diabetic men regarding their
incidence of ESRD.2 The loss of female
“protection” in diabetes remains contro-
versial.3,4 Moreover, some risk factors for

DN differ between men and women,5

suggesting sex-specific mechanisms that
may be related to differences in the hor-
monal profiles as estrogen exerts reno-
protective effects in nondiabetic persons.4

Furthermore, women with T1D have
lower estradiol concentrations and a
hormonal profile that more closely re-
sembles that of men.3 Nevertheless, the
role of estrogen in the progression of
DN still remains ambiguous.6

DNclusters in families, and the sibling
risk ratio is conspicuouslyhigh forESRD,
suggesting that genetic variation influ-
ences the risk of ESRD.7 We previously

identified two genetic loci that are asso-
ciated with ESRD in patients with T1D,
namely AFF3 and RGMA-MCTP2.8

However, no genetic variants have so
far been robustly associated with ESRD
in a sex-specific manner. Therefore, we
studied common genetic variation af-
fecting the risk of ESRD in men and
women separately, using a genome-
wide association study (GWAS) ap-
proach involving 3652 Finnish patients
with T1D from the Finnish Diabetic Ne-
phropathy (FinnDiane) Study.9

The FinnDiane discovery cohort in-
cluded 258 women and 387 men with
ESRD. These patients were compared
with those without signs of DN despite
long duration of diabetes. GWAS on
ESRD was performed separately for
men (Ncases=387, Ncontrols=655) and
women (Ncases=258, Ncontrols=935). The
main clinical characteristics of the pa-
tients are shown in Table 1.
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The Manhattan plots of the GWAS
results for both sexes are shown in Sup-
plemental Figure 1. GWAS on ESRD in
women identified two highly correlated
single-nucleotide polymorphisms
(SNPs) (r2=1 in HapMap2 CEU sam-
ples) on chromosome 2q31.1 that
reached genome-wide significance:
rs4972593, with an odds ratio (OR) of
2.39 (95% confidence interval [CI],
1.75 to 3.25; P=3.023102 8), and
rs530673, with an OR of 2.38 (95% CI,
1.75 to 3.23; P=3.5231028) (Figure 1A).
No association was seen for this locus in
men (OR, 0.97 [95% CI, 0.78 to 1.21];
P=0.78) (Figure 1B), even though we had
99% power to detect the same association
with a=0.05. Furthermore, no other loci
reached genome-wide significance inmen
or women (Supplemental Table 1).

Testing for heterogeneity indicated a
sex-specific difference in the association
of rs4972593 with ESRD (heterogeneity
P=5.831025). rs4972593 was nominally
associated with body mass index (BMI)
in both men and women and with he-
moglobin A1c in women (Supplemental
Table 2). Association with ESRD was en-
hanced in women after adjustment for
BMI (OR, 2.64 [95% CI, 1.92 to 3.63];
P=2.731029) and remained even after
adjustment for both BMI and hemoglo-
bin A1c, although slightly attenuated
(OR, 2.31 [95% CI, 1.65 to 3.24];
P=1.331026). Thus, it is unlikely that
the observed sex difference would be
driven by a sex-related confounder.

Replication of the association at
rs4972593 was then sought in three ad-
ditional T1D cohorts within the GENIE
collaboration, with substantial num-
bers of women with ESRD available
(Ireland-Warren 3-Genetics of Kidneys
in Diabetes UK [UK-ROI], n=113; Ge-
netics of Kidneys in Diabetes US Study
[GoKinD US], n=252; Italian study,
n=68).8 The association between
rs4972593 and ESRD in women was rep-
licated with a combined P value of 0.02
for the three studies (OR, 1.41 [95% CI,
1.05 to 1.90]). Even though the results
did not reach statistical significance in
the UK-ROI and Italian studies, the ef-
fect was in the same direction also in
these studies. Moreover, all the compar-
isons with high power (.90%: GoKinD
US and the replication studies com-
bined) showed evidence of association.
Of note, the OR of 2.07 in GoKinD
US was similar to that in the FinnDiane
discovery cohort. The association re-
mained genome-wide significant after
combined meta-analysis of the Finn-
Diane and replication cohorts (OR, 1.81
[95% CI, 1.47 to 2.24]; P=3.8531028)
(Table 2 and Figure 2A). As seen in
FinnDiane, there was no association
between rs4972593 and ESRD in men
in the replication cohorts (P=0.90),
and the results remained nonsignifi-
cant after combined meta-analysis
(OR, 0.97 [95% CI, 0.78 to 1.21];
P=0.78) (Table 2 and Figure 2B). Con-
sequently, the meta-analysis indicated

heterogeneity between men and women
(P=5.731025).

To explore whether additional asso-
ciated loci could be detected by including
more patients, we performed a genome-
wide meta-analysis of the FinnDiane,
UK-ROI, and GoKinD US GWAS data.
However, no association other than that
observed between rs4972593 and ESRD
in women reached genome-wide signif-
icance. Furthermore, no evidence of sex
difference was found for the SNPs that
have been previously reported to be
associated (P,531028) with ESRD in
T1D (AFF3,8 RGMA-MCTP2,8 and
EPO10) (Supplemental Table 3).

To ensure that the reported associa-
tion with ESRD is due to diabetes, we
excluded all patients with T1D known to
have ESRD due to any nondiabetic cause.
Supporting a diabetic background, most
patients with ESRD in the FinnDiane had
diabetic retinopathy, and only six pa-
tients with ESRD had no retinopathy. In
both UK-ROI and GoKinD US, all pa-
tients had retinopathy as an inclusion
criterion for the studies. Therefore, the
genetic variation at rs4972593 appears to
be associatedwith susceptibility to ESRD
in women with T1D.

We further investigated whether the
association is specific for women with
T1D or is also observed in women with
type 2 diabetes by exploring this associ-
ation in the Family Investigation of
Nephropathy and Diabetes (FIND)
study.11 No association was found in

Table 1. Clinical characteristics of the FinnDiane patients

Characteristic
Women Men

ESRD (n=258) Controls (n=935) ESRD (n=387) Controls (n=655)

Age at T1D onset (yr) 11.366.7 14.767.8 13.767.6 15.868.9
Age (yr) 44.468.9 42.9611.1 47.768.6 43611.9
T1D duration (yr) 33.168.8 28.369.6 3468.3 27.269.2
Transplantation, n (%) 123 (47.7) 0 (0) 193 (49.9) 0 (0)
Antihypertensive medication, n (%) 229 (88.8) 204 (21.9) 361 (93.3) 179 (27.3)
Lipid-lowering medication, n (%) 99 (38.4) 114 (12.2) 162 (41.9) 99 (15.1)
BMI (kg/m2) 2463.9 25.163.8 25.164.3 25.463.1
Systolic BP (mmHg) 151624 133618 153625 136616
Diastolic BP (mmHg) 82613 7869 84612 79610
Hemoglobin A1c (%) 8.861.8 8.161.2 8.761.7 8.061.2
Total cholesterol (mmol/L) 5.461.3 4.960.8 5.161.1 4.760.9
Triglycerides (mmol/L) 1.5 (1.0–1.8) 1.0 (0.7–1.1) 1.9 (1.1–2.3) 1.1 (0.7–1.3)
HDL cholesterol (mmol/L) 1.460.5 1.660.4 1.260.4 1.460.4

Data are mean 6 SD, n (%), or mean (interquartile range).
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African American (Ncases=570), Euro-
pean American (Ncases165), or Mexican
American (Ncases=413) women with di-
abetes (Supplemental Table 4). Further-
more, we sought to investigate whether
rs4972593 affects the risk for ESRD in
women without diabetes by studying fe-
male patients of the Wellcome Trust
Case-Control Consortium (WTCCC)
study on Renal Transplant Dysfunction.
However, no adequate proxies were
available for rs4972593 in the WTCCC
GWAS, and, thus, the role of rs4972593
in the nondiabetic women remains un-
clear.

The SNP rs4972593 is located in an
intergenic region between the SP3 and
CDCA7 genes. In silico analysis of the
associated SNP for transcription fac-
tor–binding sites (TFBS) indicates that
the presence of the minor A allele results
in loss of several TFBSs, including bind-
ing sites for E-box and hypoxia inducible
factors (Supplemental Table 5). More-
over, eight estrogen-responsive elements
(EREs) were predicted within 5k base
pairs (bp) up- or downstream of
rs4972593 (Supplemental Table 6).
rs530673, a SNP in high linkage disequi-
librium with rs4972593 (D’=1; r2=1 in
HapMap II CEU), indicated potential
regulatory activity (GATA2 binding,

SMAD4 binding motif, DNase hyper-
sensitivity peak) in the ENCODE Regu-
lomeDB (Supplemental Table 7).12

However, no significant expression
quantitative trait loci (eQTL) association
was observed between rs4972593 or any
other SNP in linkage disequilibrium
with rs4972593 and the expression level
of the genes within a 1-Mbp region up-
or downstream of rs4972593 in the hu-
man HapMap3 lymphoblastoid cell line
(Supplemental Table 8).13

We then assessed DN- and sex-related
differential gene expression of the flank-
ing genes SP3 and CDCA7.14,15 Interest-
ingly, SP3was among the top 3‰ for the
sex-specific gene expression in glomeruli
(fold change, 21.45 [i.e., higher expres-
sion in women]; P=0.004) Supplemental
Table 9).15 No renal expression was re-
ported for CDCA7 in studies of DN.14,15

CDCA7 encodes a transcription fac-
tor that participates in the regulation of
cell proliferation, targeted byMyc, and is
frequently overexpressed in human can-
cers.16 SP3 encodes the transcription
factor Sp3, which binds to consensus
GC-box and GT-box regulatory ele-
ments in target genes. Interestingly, Sp3
directly interacts with the estrogen re-
ceptor-a (ERa), and 17b-estradiol has
been shown to activate GC-rich promoter

constructs through the ERa/Sp3 path-
way, independent of the classic EREs.
Among the ERa/Sp3 pathway target
genes, 17b-estradiol differentially regu-
lates VEGFA expression in various cell
models.17,18 Vascular endothelial growth
factor plays a key role in the angiogenesis,
and it has been suggested as one of the
common pathogenic factors behind re-
tinopathy and nephropathy.19

We recently reported an induction of
the Sp1/Sp3 transcriptional network in
human renal tubule epithelial cells stim-
ulated with the profibrotic cytokine
TGF-b and identified the Sp3 target
gene TGFBI as the top-ranked upregula-
ted gene.20 Other noteworthy Sp3 target
genes include COL1A1,21 NOTCH1,22

and CD2AP, encoding an adapter protein
essential for the glomerular filtration
barrier interacting with the slit dia-
phragm proteins nephrin and podo-
cin.23,24 In addition to the sex-specific
glomerular expression reported for SP3,
these data highlight this gene as a plausi-
ble positional and biologic candidate for
future fine-mapping studies in women
with T1D.

Despite the evidence that sex influen-
ces the riskof ESRD inpatientswithT1D,
no large-scale sex-specific genetic studies
have thus far been reported, and none of

Figure 1. RegionalManhattan association plot of the associated region at rs4972593 showing association inwomen (A) but not inmen (B).
The color of the SNP symbol indicates the linkage disequilibrium (r2) with the index SNP (purple) in the 1000 Genomes CEU population.
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the earlier reported genetic susceptibility
loci for ESRD inT1Dshowed sex-specific
association. Here wewere able to detect a
novel locus near SP3 associated with
ESRD in women. Because no association
was seen in men for rs4972593, it is not
surprising that this locus was not detec-
ted in our previous GWAS on ESRD,
achieving a modest P value of 6.731025

when men and women were analyzed
together. This emphasizes the impor-
tance of analyzing well characterized, ho-
mogeneous subgroups in a GWAS setting
in parallel to combining all available pa-
tients. Other sex-specific susceptibility
loci for ESRD may be discovered when
larger GWASs become available. In con-
clusion, our data point to a biologically
plausible pathway and suggest that the
association on 2q31.1 may be one expla-
nation for why some women with T1D
lose their protection against ESRD.

CONCISE METHODS

Patients
Study participants have previously been de-

scribed in detail.8 The discovery cohort con-

sisted of 3652 patients with T1D from

FinnDiane, a Finnish nationwidemulticenter

study.9 The main clinical characteristics of the

patients are shown in Table 1. Replication was

performed on three independent cohorts par-

ticipating in the GENIE collaboration: the UK-

ROI collection, with 1830 genotyped patients

with T1D; theGoKinD US cohort, with 1792

patients; and an Italian cohort from the Milan

region comprising of 397 patients with T1D.

We compared patients who had T1D and

ESRD with T1D controls who had no evi-

dence of diabetic kidney disease despite long

duration of diabetes. ESRDwas defined as the

need for dialysis treatment or having re-

ceived a kidney transplant, and theminimum

duration of T1Dwas 10 years.We excluded all

patients with T1D who were known to have

ESRD due to any nondiabetic cause. In

FinnDiane, 85% of the patients with ESRD

had laser treatment (9% had missing data)

and only six had no retinopathy. In UK-ROI

and GoKinD US, all ESRD patients had reti-

nopathy as an inclusion criterion. Controls

were defined as patients with T1D who had

stable normal urinary albumin excretion and

diabetes duration of at least 15 years, as de-

scribed earlier.8

Genotyping
Genotyping of the FinnDiane patients was

performed using the Illumina 610Quad chip;

genotype calling, quality control, and impu-

tation procedures have been described ear-

lier.8 In brief, genotypes with low genotyping

quality or lowminor allele frequency (,0.01)

were discarded, as were samples with low

genotyping quality or cryptic relatedness

and geographic outliers based on principal

component analysis. A total of 3546 samples

and 549,530 SNPs remained after quality

control. Imputation was based on the Hap-

Map II CEU population and resulted in

approximately 2.4 million SNPs across the

autosomal genome. For the replication in

UK-ROI and GoKinD US, rs4972593 was se-

lected from the UK-ROI and GoKinD US

GWAS data, where the quality control and

imputation procedures were the same as de-

scribed above. Quality control resulted in

1726 UK-ROI samples and 1595 GoKinD

US samples. The DNA samples from Italy

were genotyped using Sequenom IPLEX as-

says (Sequenom Inc., San Diego, CA). Impu-

tation and genotyping quality metrics are

given in Supplemental Table 10.

Patients and Genotyping in the
FIND Study
The FIND cohort, consisting of 885 samples

from European Americans, 1460 samples

from African Americans, 889 samples from

American Indians, and 1535 samples from

Mexican Americans, underwent genotyping

using theAffymetrix SNP6.0GeneChip at the

Genotyping Core Facility at Affymetrix

(Santa Clara, CA). Samples were plated by

ethnic group, randomly assigned by case/

control status; 217 pairs of duplicate samples

were included for quality control. Genotype

calls used the Birdsuite algorithm as imple-

mented in GCOS software (Affymetrix).

Samples with call rates .95% were subject

to additional quality control procedures for

sample and SNP heterozygosity, sample and

SNP missingness, sex verification, expected

and unexpected relatedness, and population

substructure analysis via principal compo-

nents analysis. After trimming, 342 cases

Table 2. Association analysis results for rs4972593

Variable

Women Men

Allele
Frequency
in Cases/
Controls

Cases/
Controls
(n/n)

Power OR (95% CI) P Value

Allele
Frequency
in Cases/
Controls

Cases/
Controls
(n/n)

Power OR (95% CI)
P

Value

FinnDiane 0.17/0.09 258/935 0.97 2.39 (1.75 to 3.25) 3.0231028 0.11/0.11 387/655 0.99 0.95 (0.69 to 1.32) 0.77
Replication
UK-ROI 0.18/0.16 113/508 0.86 1.16 (0.75 to 1.80) 0.50 0.16/0.14 146/395 0.87 1.10 (0.70 to 1.71) 0.68
GoKinD US 0.17/0.13 252/479 0.97 2.07 (1.24 to 3.46) 0.0055 0.14/0.13 256/342 0.92 1.04 (0.58 to 1.86) 0.89
Italy 0.18/0.15 65/86 0.48 1.20 (0.64 to 2.24) 0.63 0.14/0.17 105/99 0.53 0.78 (0.44 to 1.36) 0.40

Meta
replication

0.16 430/1073 1.00 1.41 (1.05 to 1.90) 0.021 0.14 507/836 1.00 0.98 (0.73 to 1.32) 0.90

Meta all 0.14 688/2009 1.00 1.81 (1.47 to 2.24) 3.8531028 0.13 894/1491 1.00 0.97 (0.78 to 1.21) 0.78
Association analyses are calculated with the minor A allele as the effect allele. Meta replication is the meta-analysis of the three replication cohorts, and meta all is
themeta-analysis of all four cohorts; for both, a weighted estimate of theminor allele frequency over all patients is given. Allele frequency refers to the frequency of
the minor A allele. Power refers to the statistical power to detect association with a=0.05 and OR of 1.75 (i.e., the lower 95% CI for women in FinnDiane). Power to
detect the association with a=531028 was 0.08 in women and 0.12 in men in the discovery cohort and 0.93 in women and 0.92 in men in the combined meta-
analysis.
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and 404 controls of European American an-

cestry, 979 cases and 304 controls of African

American ancestry, 538 cases and 319 controls

of American Indian ancestry, and 779 cases

and 594 controls of Mexican American an-

cestry were included in a final meta-analysis.

Statistical Analyses
The association analysis that compared ESRD

caseswithT1Dcontrolswithnormal albumin

excretion despite long duration of T1D was

performed with PLINK 1.0725 using logistic

regression and adjustment for age, T1D du-

ration, and the 10 first principal components

that were obtained with the EIGENSTRAT

software.26 Estimated allele dosages were

used rather than the most likely genotypes

in order to account for the uncertainty arising

from the imputation process. Women and

men were analyzed separately. The quantile-

quantile plots of both analyses showed

good adherence to the diagonal line of expec-

ted P values, and very little excess genomic

inflation was observed (l=1.034 for women,

l=1.045 for men). The association results

were adjusted for the genomic inflation.

The same methods were used for the statisti-

cal analysis of UK-ROI and GoKinD US. Be-

cause of the relatively small number of

women with ESRD in the Italian cohort, for

those samples we used the Fisher exact test of

association, which is deemed more robust for

small sample numbers. Consequently, the

Italian replication cohort was not adjusted

for any covariates. Meta-analysis of the four

cohorts was performed using a fixed-effect

model based on the standard errors and

P values, implemented with METAL soft-

ware.27 Power calculations were performed

with Genetic Power Calculator.28

TFBS and Regulatory Function
We looked for the TFBSs directly created or

deleted due to rs4972593 usingMatInspector

(release professional 8.06; Matrix Family

Library, version 8.4,) from the Genomatix

software suite (Genomatix Software, GmbH,

Munich, Germany). The flanking region 5

kbp up- and downstream of rs4972593 was

downloaded from National Center for Bio-

technology Information SNP database

(http://www.ncbi.nlm.nih.gov/projects/

SNP/), and MatInspector was used to detect

EREs (V$EREF family) within this region.

Furthermore, we sought evidence of the reg-

ulatory function of the SNPs using the Regu-

lomeDB database, which annotates SNPs with

known and predicted regulatory elements in

the intergenic regions. The annotation is

based on regions of DNAase hypersensitivity,

TFBS, and promoter regions that have been

biochemically characterized to regulate tran-

scription.12

Renal Gene Expression
Disease- and sex-associated gene expression

in published human DNmicroarray data sets

was determined using Nephromine (www.

nephromine.org). Selected data sets com-

prised microdissected renal biopsy speci-

mens from patients with DN versus living

donors or patients who had minimal-change

disease.14,15 We performed a total of 10 var-

ious sex- and disease-specific association

look-ups (Supplemental Table 9). Therefore,

the P values were adjusted for multiple test-

ing according to 10 performed tests; a P value

of 0.005 was required for significance after

adjustment.

eQTL Gene Expression
Westudiedwhether rs4972593was associated

with the gene expression level of any of the

genes within a 1-Mbp region up- and down-

stream in the HapMap3 lymphoblastoid cell

lines13 using the Genevar user interface

(http://www.sanger.ac.uk/resources/soft-

ware/genevar/). The analysis included all the

SNPs in full linkage disequilibrium (r2=1)

with rs4972593 in the HapMap2 CEU sam-

ples and with data on HapMap3 eQTL in

Genevar; three SNPs filled the criteria

(rs530673, rs4972590, rs4972591). The

P value threshold for statistical significance

after multiple testing was P,0.00063 based

on a=0.05 significance level, 10 studied

Figure 2. Forest plot of the meta-analysis of ESRD association at rs4972593 showing as-
sociation in women (A) but not in men (B). Plots show the study-specific association esti-
mates (ORs and 95% CIs) for the discovery and replication cohorts. The OR and 95% CI for
the meta-analysis of the discovery and replication cohorts are denoted by the diamond.
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genes, and 8 included HapMap populations.

Because the selected SNPs were in strong

linkage disequilibrium, we did not adjust

for the number of SNPs.
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